Students' Musculoskeletal and Visual Concerns

Inger M. Williams, Ph.D.

Consultant in Computer Ergonomics for Offices and Schools, Cergos Adjunct Assistant Professor, Center for Visual Science, University of Rochester, New York

INTRODUCTION

Musculoskeletal and visual concerns among children and adolescents are common. The World Health Organization [1] found in their cross-national research study that backache, at least once a week, is reported by 30% of 11 year olds, 33% and 30% of 13 year old girls and boy's respectively and 43% and 33% of 15 year old girls and boys respectively in the United States. Epidemiological studies conducted in the last 15 years, mostly in Europe, reveal that neck, shoulder and especially back pains are as common in children and adolescents as in adults [2-4]. The American Public Health Association [5] states that 25% of children between K-6th grades have vision problems many of which can be corrected if detected early enough. Recognizing not only the presence but also the intensity and frequency of these musculoskeletal and visual concerns in adults [6, 7]. This insight could also help us develop better strategies to prevent risk factors from having an impact already at a young age [8-11].

EPIDEMIOLOGICAL DATA

The prevalence data in epidemiological studies varies greatly [2, 12] due to:

- Differences in type of incidence¹ and prevalence² measures used
- If they are cross sectional, cohort, or longitudinal studies
- Type of questionnaire administered and phrasing of the questions
- Use of physical examination in addition to a questionnaire
- Use of control groups
- Definitions of back pain.

Reports of lifetime prevalence of back pain in 9–17 year olds range between 30–59% [13-24]. Longitudinal studies show that a rapid increase in back pain occurs in early adolescence between the ages 12–16 [7, 25, 26]. Burton [21] found that the annual incidence of low back pain almost doubled between the ages 11-15. At around 20 years of age the incidence rate levels off and remains fairly constant into the 40s [26].

There are fewer epidemiological studies of children's and adolescents' neck and shoulder pain [4, 27-29]. Six percent of third and fifth graders had experienced neck pain in the previous 3 months

¹ Incidence is the proportion of a population that develop pain in a defined area for the first time during a given time period

 $^{^{2}}$ Lifetime prevalence is the proportion of a population that have experienced pain by the age the study is conducted; point prevalence is the proportion of a population who are experiencing symptoms within a well defined time period

[29]. Among adolescents, 12-16 years of age, the cumulative annual incidence is 28.4% [28] and among 12-18 years olds 50% report occasional symptoms of neck and upper limb pain with 20% of girls and 10% of boys having recurrent chronic pain [4]. Epidemiological studies of children's and adolescents' arm, wrist, and hands have not been found.

The prevalence rates of visual concerns in children include several visual disorders that all are critical to detect early. In this paper only prevalence of myopia is addressed due to space constraints. Epidemiological studies from Japan [30], Greece [31]China [32] and Taiwan [33] find prevalence rates of 20% for 7 years olds, 43-61% in 12 year olds, 36% - 84% in 15-18 year olds. One study [30] found an increase in incidence rates between 1984 and 1996.

RISK FACTORS

There are indications that back, neck and shoulder pain in childhood and adolescence are important risk factors for the development of musculoskeletal disorders in adulthood [7, 26, 34-38]. The risk factors for children's and adolescents' back, neck, and shoulder pain, reported in the cited studies, are presented in Table 1. Each risk factor is associated with back pain and a few also with neck and shoulder pain. The risk factors listed are very similar to those reported for adults [3].

Carrying a heavy back pack should also be added to this list of risk factors since it has recently been found to contribute to children's and adolescents' back pain [40-46].

Risk factors associated with the development of myopia are both hereditary and extended time performing short viewing distance work such as reading and writing and other near work.

MUSCULOSKELETAL AND VISUAL CONCERNS DURING COMPUTER USE

One important risk factor for adults <u>not included</u> in child and adolescent epidemiological studies is students' computer use. Since the introduction of computers in homes, schools, and colleges there has been a growing concern that extended computer work will place young computer users at risk for developing cumulative musculoskeletal disorders and computer vision syndrome. Studies conducted in elementary and middle schools, and in colleges, have discovered that students do experience musculoskeletal and visual <u>discomfort</u> during computer use similar to that reported by adults [47-52]. Table 2 summarizes the methodology used, type of questions asked and percent of students reporting discomfort in various areas of the body. Jacobs [47], Harris [49], and Williams [50] also found that discomfort was associated with time of continuous computer work and use of workstations that do not meet students postural and visual needs. These conditions are two of the well established risk factors for musculoskeletal and vision concerns in adults [3, 53-55].

Table 1. Risk factors for back, neck and shoulder pain in childhood and adolescence (adapted from material
presented in Balague 1999)

Risk Factors	Type of risk			
Individual Factors:				
Age	Sharpest increase in pain between 12-15 years of age			
Gender	Females report more frequent and more severe pain in most studies			
Anthropometric parameters such as	Growth rate (i.e. growth spurts)			
weight, height, body mass index (BMI)	BMI > 25 kg /m ² (not a risk factors in all studies)			
Mobility and flexibility of the spine	Decrease mobility of hips and knees			
	Decreased extension of lumbar spine			
	Decreased flexibility of the posterior muscles of the thigh			
	Tight hamstring			
	Decreased flexibility of the quadriceps			
	(not a risk factors in all studies)			
Disc degeneration	Disc degeneration soon after rapid physical growth			
Activity level factors				
Posture	More studies need to define postures association with back pain,			
	possible factors are:			
	Thoracic kyphosis			
	Hyperlordosis			
	Weakness of abdominal muscles			
	Sitting on the edge of a chair			
Physical activity level	Low physical activity < 2 days a week			
	High competitive sports activity			
Television viewing	> 1 hour / day ; >2 hours / day			
Video game playing	> 2 hours / day			
Instrument playing	Intense piano, violin playing /practicing (not a risk factor in all			
	studies all studies)			
After school work	Physically demanding after school work tasks			
Psychosocial factors:				
Family history and heredity	Parents coping with musculoskeletal symptoms			
	Parents physical predisposition			
Psychological factors	Low mental health score			
	Depression			
	Sleeplessness			
	Hyperactivity			
	Aggressiveness			
	Stress			
Health behaviors:				
Smoking	Smoking			

DISCUSSION AND/OR CONCLUSIONS

Students' musculoskeletal and visual concerns are similar to adults'. The prevalence rates are comparable and the underlying risk factors are nearly alike. Only the presence of these concerns has been addressed here. How intense the pain is and how often it occurs should also be explored to fully comprehend the consequences it has on students' quality of life. In addition, since unresolved visual concerns can affect postures [56] visions role in the development of musculoskeletal concerns in children and adolescents needs to be better understood.

Reference	Population	Methodology	Type of question	Area of body and percent		
Jacobs	N=152	Musculoskeletal	Discomfort experienced	Neck (33%) 11%		
(2002)	6 th grade	Disorder	in the last year and	Shoulders (16%) 3%		
		Questionnaire	intensity mild, moderate,	Back (25%) 8%		
		to students	severe (data in parenthesis	Elbow (9%) 4%		
			show only if pain was	Wrist/Hand (20%) 10%		
			present). Did computer			
			use make that discomfort			
			worse			
Williams et	N=218	Questionnaire	Have you ever heard a	Eyes 19% (56%)		
al (2000)	Elementary	to elementary	student complain about	Neck 8% (47%)		
	school	school teachers	discomfort in any of the	Shoulders 5%		
	teachers		areas listed below during	Back 7%		
	K - 6		any of the years you have	Arms 9% (40%)		
			worked with students	Hands/wrists 18%		
			using computers? Do you			
			have special concerns			
TT · 1	NL 214		(data in parenthesis)	10.000/		
Harris and	N=314	Questionnaire	Discomfort during use of	Head 10-20%		
Straker	Ages 10-1/	to students	laptop	Neck $>38\%$		
(2000)	(lantan	Dody Man		Shoulder $10-20\%$		
	(laptop	воду мар		$\begin{array}{ccc} \text{Back} & 20-38\% \\ \text{Eargering} & 5,100/ \end{array}$		
	computers)			$\begin{array}{c} \text{Folearins} & 5-10\% \\ \text{Hands} & 20.38\% \end{array}$		
adrigon et	N-101	Questionnaire	Have you experienced	Fues 60%		
1 (1000)	Indergradua	to students	discomfort while using a	Upper extremities: 72%		
al (1999)	tes	to students	computer in any of the	opper extremities. 7276		
	105		areas listed below			
Katz et al	N=1544	Questionnaire	Do you experience pain	Hands wrists arms		
(2000)	Senior	to students	numbness tingling or	fiunds, wrists, unno		
(2000)	undergradua	to students	other discomfort in your			
	tes		hands, wrists or arms			
			when you use a	Responses. % of students:		
			computer?	47%		
			Response alternatives:			
			Never	41%		
			Yes if I use the computer			
			for several hours	6.9%		
			Yes if I use the computer			
			for an hour or so	3.2%		
			Yes even if I just use the	2.5%		
			computer for a few			
			minutes			
			Yes with virtually all			
			activities			

Table 2.	Student	population st	tudied, metł	10dology, q	uestion asked,	percent re	ported discomfor	per bod	y area
----------	---------	---------------	--------------	-------------	----------------	------------	------------------	---------	--------

Since childhood back, neck and shoulder pain is a predictor of adulthood back, neck, and shoulder pain we need to address the risk factors at an early age in order to reduce the probability that pain and risk behaviors become permanent. Similarly, visual concerns must be addressed at an early age to prevent damage to the visual system. All risk factors cannot be eliminated or prevented. However, awareness of the effects of a few might make a difference.

If musculoskeletal discomfort during computer use is a predictor of adults' computer related musculoskeletal disorders then students need to learn how to protect themselves from injury as they start using a computer. Also, if a common risk behavior in adults: poor seated postures for extended periods of time, becomes a well-established habit at an early age, it is difficult to break it in adulthood. A seated posture does not only depend on workstation and task design but also on an individual's sitting habits.

Work performance are seriously affected by musculoskeletal and visual concerns in adults, we do not know their effect on students' school performance. How children and adolescents cope with discomfort and pain might be very different from adults coping behaviors.

Cardon [10] have shown that a back prevention program in elementary school is effective in teaching back care principles. We need similar programs educating students in ergonomic principles also. We could start such an approach already when students are using computers. Hopefully, such a program would result in students reflexively adjusting their workstations, not necessarily with expensive equipment, to fit them well to ensure they can use healthy postures and sound work habits.

REFERENCES

- 1. Currie, C., et al., *Health and Health Behavior among Young People*. 2000, World Health Organization: Copenhagen.
- 2. Balague, F., B. Troussier, and J.J. Salminen, *Non-specific low back pain in children and adolescents: risk factors*. European Spine Journal, 1999. **8**: p. 429-438.
- 3. National, Research, and Council, *Musculoskeletal disorders and the workplace: Low back and upper extremities*, ed. National Research Council 2001, Washington, D.C.: National Academy Press.
- 4. Niemi, S., et al., *Neck and shoulder symptoms and leisure time activities in high school students.* Journal of Orthopedics and Sports Medicine, 1996. **24**(1): p. 25-29.
- 5. American, et al., *American Public Health Association*. 2002.
- 6. Goodman, J. and P. McGrath, *The epidemiology of pain in children and adolescents: a review*. Pain, 1991. **46**: p. 247-264.
- 7. Harreby, M., et al., *Are radiologic changes in the thoracic and lumbar spine of adolescents risk factors for low back pain in adults?* Spine, 1995. **20**: p. 2298-2302.
- 8. Cardon, G., D. DeClercq, and I. De Bourdeaudhuij, *Effect of back care education in elementary school children*. Acta Paediatrica, 2000. **89**: p. 1010-1017.
- 9. Cardon, G., I. De Bourdeaudhuij, and D. DeClercq, *Generalization of back education principles by elementary school children; evaluation with a practical test and candid camera observation.* Acta Paediatrica, 2001. **90**: p. 143-150.
- 10. Cardon, G., D. DeClercq, and I. De Bourdeaudhuij, *Back education efficacy in elementary school children*. Spine, 2002. **27**(3): p. 299-305.
- 11. DaSilva, M.G. Ergonomic profilactic program and low back pain in high school students. in Proceeding of the 13th Triennial congress of the International Ergonomics Association. 1997. Tampere, Finland: Finish Institute of Occupational Health.
- 12. Ebbehoj, N.E., et al., *Laenderygsmerter hos barn og unge*. Ugeskrift for laeger, 2002. **164**: p. 755 758.
- 13. Balague, F., et al., *Low back pain in school children- an epidemiological study*. Journal of Rehabilitation Medicine, 1993. **20**: p. 175-179.

- Balague, F., et al., Low back pain in school children. A study of psychological factors. Spine, 1995.
 20: p. 1265 1270.
- 15. Balague, F., et al., *Non-specific low back pain among school children: a field survey with analysis of some associated factors.* Journal of Spinal Disorders, 1994. 7: p. 374-379.
- 16. Kristiansdottir, G., *Prevalence of self-reported back pain in school children: a study of sociodemographic differences.* European Journal of Pediatrics, 1996. **155**: p. 984 986.
- 17. Olsen, T. and R. Andersson, *The epidemiology of low-back pain in an adolescent population*. American Journal of Public Health, 1992. **82**: p. 606-608.
- 18. Salminen, J.J., J. Pentti, and P. Terho, *Low back pain and disability in 14 year old school children*. Acta Paediatrica, 1992. **81**: p. 1035-1039.
- 19. Troussier, B., et al., *Back pain in school children. Study among 1178 people.* Scandinavian Journal of Rehabilitation Medicine, 1994. **26**: p. 143 146.
- 20. Harreby, M., et al., *Risk factors for low back pain in a cohort of 1389*. European Spine Journal, 1999. **8**(6): p. 444-450.
- 21. Burton, K.A., et al., *The natural history of low back pain in adolescents*. Spine, 1996. **21**: p. 2323-2328.
- 22. Gunzburg, R., et al., *low back pain in a population of school children*. European Spine Journal, 1999. **8**: p. 439-443.
- 23. Viry, P., C. Creveuil, and C. Marcelli, *Non specific back pain in children. A search for associated factros in 14 yearl old school children.* Rev Rhum Engl Ed, 1999. **66**(7-9): p. 381-388.
- 24. Wedderkopp, N., et al., *Back pain reporting pattern in a Danish population based sample of children and adolescents*. Spine, 2001. **26**: p. 1879-1883.
- 25. Salminen, J.J., *The adolescent back: A field survey of 370 Finnish school children*. Acta Pediatrica Scandinavica Suppl, 1984. **315**.
- 26. Leboeuf-Yde, C. and K. Kyvik, *At what age does low back pain become a problem*. Spine, 1998. 23: p. 228-234.
- 27. Vikat, A., et al., *Neck and shoulder pain and low back pain in Finnish adolescents*. Scandinavia Journal of Public Health, 2000. **28**: p. 163-173.
- 28. Feldman, E.D., et al., *Risk factors for the development of neck and upper limb pain in adolescents*. Spine, 2002. **27**(5): p. 523-528.
- 29. Mikkelsson, M., et al., *Psychiatric symptoms in preadolescents with musculoskeletal pain and fibromyalgia*. Pediatrics, 1997. **100**(2): p. 220-227.
- 30. Matsumura, H. and H. Hirai, *Prevalence of myopia and refractive changes in students from 3 to 17 years of age*. Survey of Ophthalmology, 1999. **44**(Suppl 1): p. 109-115.
- 31. Mavracanas, T.A., et al., *Prevalence of myopia in a sample of greek students*. Acta Opthalmologica Scandinavia, 2000. **78**(6): p. 656-659.
- 32. Saw, S., et al., *Near-work activity and myopia in rural and urban school children in China*. Journal of Pediatric Opthalmology and Strabismus, 2001. **38**(3): p. 149-155.
- 33. Lin, L., et al., *Epidemiologic study of prevalence and severity of myopia among school children in taiwan in 2000.* Journal of Formosa Medical Association, 2001. **100**(10): p. 684-691.
- 34. Adams, M., A. Mannion, and P. Dolan, *Personal risk factors for first-time low back pain*. Spine, 1999. **24**: p. 2497-2505.
- 35. Phelip, X., Why the back of the child? European Spine Journal, 1999. 8: p. 426-428.
- 36. Salminen, J.J., et al., *Recurrent low back pain and early disc degeneration in the young*. Spine, 1999. **24**: p. 1316-1321.

The Proceeding of the XVI Annual International Occupational Ergonomics and Safety Conference '2002

- 37. Hertzberg, A., *Prediction of cervical and low back pain based on routine school health examination*. Scandinavian Journal of Primary Health Care, 1983. **3**: p. 247-253.
- 38. Goodman, J.E. and P.J. McGrath, *The epidemiology of pain in children and adolescents: a review*. Pain, 1991. **46**: p. 247-264.
- 39. Dainoff, M., Ergonomic Improvements in VDT workstation: Health and performance effects, in Promoting health and productivity in the computerized office, G. Salvendy, M. Dainoff, and M. Smith, J, Editors. 1990, Taylor and Francis: New York. p. 49-67.
- 40. Iyer, S.R., *An ergonomic study of chronic musculoskeletal pain in school children*. Indian Journal of Pediatrics, 2001. **68**(10): p. 937-941.
- 41. Negrini, S. and R. Carabalona, *Backpacks on! Schoolchildren's perceptions of load, association with back pain and factors determining the load.* Spine, 2002. **2**: p. 187-195.
- 42. Whittfield, J.K., S.J. Legg, and D.I. Hedderley, *The weight and use of schoolbags in New Zealand secondary schools*. Ergonomics, 2001. **44**(9): p. 819-824.
- 43. Chansirinukor, W., et al., *Effects of backpacks on students: measurement of cervical and shoulder posture*. Australian Journal of Physiotherapy, 2001. **47**(2): p. 110-116.
- 44. White, L.J., et al., *Weight of backpacks carried by elementary school children*. Academic Emergency Medicine, 2000. 7(10): p. 1168.
- 45. Grimmer, K.A., M.T. Williams, and T.K. Gill, *The associations between adolescent head-on-neck posture, backpack weight and anthropometric features.* Spine, 1999. **24**(21): p. 2262-2267.
- 46. Grimmer, K. and M.T. Williams, *Gender-age environmental associates of adolescent low back pain*. Applied Ergonomics, 2000. **31**(4): p. 343-360.
- 47. Jacobs, K., Children's computer use and musculoskeletal discomfort. Work, 2002. 18(3).
- 48. Williams, I., T. Cook, and T. Zigler. Computer Ergonomics for teachers and students. in XIVth Triennial Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Society. "Ergonomics for the New Millenium". 2000. San Diego: Human Factors and Ergonomics Society.
- 49. Harris, C. and L. Straker, *Survey of physical ergonomics issues associated with school children's use of laptop computers*. International Journal of Industrial Ergonomics, 2000. **26**(3): p. 389-398.
- 50. Williams, I., *Is there are need for ergonomic interventions and education in middle school?* (submitted for publication), 2002.
- 51. Ladrigan, P., et al. Need for and application of ergonomics with college student computer use. in 11th Annual American Psychological Society Convention. 1999. Denver, Colorado.
- 52. Katz, J.N., et al., *Prevalence of upper extremity musculoskeletal disorders in college students*. American Journal of Medicine, 2000. **109a**: p. 586-588.
- 53. Dainoff, M., *Safety and health effects of the video display terminal*, in *Patty's Industrial Hygiene*, R. Harris, L., Editor. 2000, John Wiley and Sons, Inc.
- 54. Sauter, S.L., L.M. Schleiffer, and S.J. Knutson, *Work posture, workstation design and musculoskeletal discomfort in a VDT data entry task.* Human Factors, 1991. **32**(2): p. 151-167.
- 55. Grandjean, E., Ergonomics in computerized offices. 1987, London: Taylor & Francis. 227.
- 56. Marumoto, T, et.al., *Significant correlation between school myopia and postural parameters of students while studying*. International Journal of Industrial Ergonomics, 1999, **23**(1-2): p.33-39.